
Future Generation Computer Systems 18 (2002) 421–433

VI architecture communication features and performance
on the Giganet cluster LAN

Hermann Hellwagner∗, Matthias Ohlenroth
Department of Information Technology, University Klagenfurt, Universitätsstraße 65-67, A-9020 Klagenfurt, Austria

Abstract

The virtual interface (VI) architecture standard was developed to satisfy the need for a high throughput, low latency
communication system required for cluster computing. VI architecture aims to close the performance gap between the
bandwidths and latencies provided by the communication hardware and visible to the application, respectively, by minimizing
the software overhead on the critical path of the communication. This paper presents the results of a performance study
of one VI architecture hardware implementation, the Giganet cLAN (cluster LAN). The focus of the study is to assess and
compare the performance of different VI architecture data transfer modes and specific features that are available to higher-level
communication software like MPI in order to aid the implementor to decide which VI architecture options to employ for
various communication scenarios. Examples of such options include the use of send/receive vs. RDMA data transfers, polling
vs. blocking to check completion of communication operations, multiple VIs, completion queues and scatter capabilities of
VI architecture. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: VI architecture; Giganet cLAN; Performance evaluation; System area network

1. Introduction

The performance of parallel applications running on
clusters depends on the implementation of the nodes
and the LAN or SAN (system area network) that acts
as the communication system. Conventional commu-
nication systems like Fast Ethernet and legacy TCP/IP
protocol stacks are widely used, especially for sys-
tems with limited budgets. But due to high software
processing overhead (e.g., [13]), their communication
performance is not sufficient for all application types.
Applications with high communication frequency and

∗ Corresponding author.
E-mail addresses: hermann.hellwagner@itec.uni-klu.ac.at
(H. Hellwagner), matthias.ohlenroth@itec.uni-klu.ac.at
(M. Ohlenroth).

small messages may suffer from the high latency of
such solutions.

For a modern SAN with several GBit/s hardware
throughput, it is crucial to eliminate or minimize this
software overhead along the critical path of send/rece-
ive communication operations such that application-
level latency be improved roughly proportional to the
throughput.

Appropriate techniques to reduce software overhead
have been pioneered by fast communication systems
like Active Messages [5], Fast Messages [12] and
U-Net [6].

Such techniques, as briefly reviewed in Section
2, form the basis on which the VI architecture
[2,4] has been developed. VI architecture is not
intended for application programmers; instead, it
provides a set of communication concepts and op-
erations suitable to implement efficient higher level

0167-739X/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0167-739X(01)00060-7



422 H. Hellwagner, M. Ohlenroth / Future Generation Computer Systems 18 (2002) 421–433

communication libraries, for instance MPI or a socket
interface.

There are a number of variants and specific features
of the VI architecture operations that the programmer
of communication libraries has to judiciously choose
from in order to achieve high communication perfor-
mance in various scenarios. These choices include:

• use of send/receive vs. RDMA (remote direct mem-
ory access) data transfer modes;

• use of polling vs. blocking mechanisms to test the
completion status of communication operations;

• the number of virtual interfaces (VIs) to use for a
given connection;

• use of completion queues (CQs) to simplify testing
completion of communication operations;

• use of advanced features of the VI architecture like
scatter facilities.

Often, the performance implications of design
choices like these are not obvious. Therefore, we have
performed a series of experiments in order to gain
some insight into the performance behavior of these
features. The platforms used were PC clusters config-
ured with the Giganet cLAN which implements VI
architecture in hardware. Both low-level microbench-
marks and a higher-level memory system and com-
munication performance benchmark were employed.

The results of these experiments as well as our
conclusions are presented in this paper. The paper is
organized as follows: Section 2 briefly reviews the
important features of the VI architecture standard and
covers in more detail the communication variants and
features under investigation. Section 3 introduces the
cluster platforms for the experiments and the com-
munication benchmarks used and presents the perfor-
mance results. Section 4 addresses related research.
Our conclusions are given in Section 5.

2. The VI architecture

2.1. Rationale

In conventional cluster communication systems
based on the TCP/IP protocol stack, the network is
accessed by the application (on a send operation)
via a message passing library which calls the socket
interface of the operating system (OS). During the

system call, the kernel-level TCP/IP protocol process-
ing code copies message data and adds headers at
different protocol layers and forwards the final packet
to the network interface controller (NIC) driver soft-
ware. This driver arranges the packet according to
the requirements of the NIC’s DMA engine and pro-
grams the NIC to inject the packet into the network.
On the receiving side, the NIC writes the packet into
a kernel-level buffer and informs the device driver
(via an interrupt) that a new packet has arrived. This
packet is then processed by the kernel-level protocol
stack. The receiving application’s message passing li-
brary calls the OS (via a socket) to copy the message
into an application-level buffer.

Hence, expensive protocol processing and data
copying may occur at different software layers inside
the application and inside the OS. In addition, context
switches and interrupt processing have to be per-
formed on each communication request. These factors
contribute to significant software processing over-
head, leading to a so-calledcluster communication
gap, i.e., a discrepancy between the communication
performance provided by the network hardware and
visible to the application, respectively.

Previous research, e.g., within the Active Messages
[5], Fast Messages [12] and U-Net [6] projects, has
devised and implemented techniques to minimize the
software overhead on the critical communication path
and has thus been able to reduce the application-level
communication latency by several factors.

Key techniques to minimize software processing
overhead that have been developed by this research,
can be briefly summarized as follows:

• Connection management (most importantly, con-
nection setup and teardown) and communication
operations proper are separated such that the OS
needs to be only involved in the former activities.

• User processes are given direct (user-level) access
to the NIC such that the OS may be bypassed on
the critical communication path. This requires a
well-defined interface to the NIC, usually in the
form of communication endpoints and functions to
access them or descriptors which specify commu-
nication operations to be performed.

• User memory regions are registered with the NIC
as message buffers such that data can be directly
read from or written to them during communication



H. Hellwagner, M. Ohlenroth / Future Generation Computer Systems 18 (2002) 421–433 423

operations. Memory registration usually includes
negotiation of buffer identifiers (memory handles)
between the user process and the NIC, setting up
address translation and protection tables, and pin-
ning of the message buffers in physical memory.

• By virtue of memory registration, address transla-
tion and protection checking can be cheaply done
by the NIC on communication requests without the
need to involve the OS.

• Moreover, data transfers involved in communication
operations can also be effected directly to and from
registered user message buffers by the NIC, without
the need to do extra data copies, which leads to
the so-called zero-copy protocols (in case receive
buffers are available).

2.2. Overview

Building on these principles, the VI architecture
standard [2,4] defines a set of concepts and primi-
tives that allow an application to perform protected
communication operations directly from the user
level without involving the OS. VI architecture pro-
vides point-to-point connections, the endpoints of
which are implemented as VIs. Each user process
is provided with the illusion of one or more private
interfaces to the NIC. A VI consists of a send queue,
a receive queue and a notification mechanism called
doorbell.

Fig. 1. VI architecture model.

The VI architecture model comprises a VI con-
sumer part and a VI provider part (Fig. 1). TheVI
consumer consists of an application and a commu-
nication library like MPI that uses VI services via
a lower level library (VI user agent in the figure).
The VI provider consists of the NIC hardware and a
kernel-level driver component (VI kernel agent). This
component is responsible for handling protection re-
lated functions like opening and closing connections,
for registering the application’s memory regions (e.g.,
message buffers) with the NIC for communication
purposes, and for address mapping of these message
buffers. Communication requests like send, receive,
and RDMA bypass the OS interface and interact
directly with the NIC via a VI.

Initiating a communication operation requires the
VI consumer to prepare adescriptor of the work to
be done, post it on the respective queue of a VI, and
inform the NIC about the new communication request
using the doorbell mechanism. The NIC will execute
the communication request according to the informa-
tion provided in the descriptor. After communication,
the NIC will record completion status information in
the status field of the descriptor.

Communication occurs to and from user memory
regions which the VI consumer has to register with
the NIC and which are subsequently identified by a
pair (virtual address, memory handle). It is important
that, at the beginning of a communication activity, the



424 H. Hellwagner, M. Ohlenroth / Future Generation Computer Systems 18 (2002) 421–433

Table 1
Ping-pong benchmark codes (simplified)

Send/receive polling Send/receive blocking RDMA write polling RDMA write blocking

Requester while (loop--){ while (loop--) { while (loop--) { while (loop--) {
VipPostSend(); VipPostSend(); ∗flag = 1; ∗flag = 1;
VipPostRecv(); VipPostRecv(); VipPostSend(); VipPostSend();
while(!VipSendDone()); VipSendWait(); while(!VipSendDone()); VipSendWait();
while(!VipRecvDone()); VipRecvWait(); while(∗flag); while(∗flag);

} } } }
Responder while (loop--){ while (loop--) { while (loop--) { while (loop--) {

while(!VipRecvDone()); VipRecvWait(); while (!∗flag); while (!∗flag);
VipPostSend(); VipPostSend(); ∗flag = 0; ∗flag = 0;
while(!VipSendDone()); VipSendWait(); VipPostSend(); VipPostSend();
VipPostRecv(); VipPostRecv(); while(!VipSendDone()); VipSendWait();

} } } }

receive descriptor be posted prior to the send descrip-
tor such that a zero-copy protocol can be executed.

2.3. Communication options

The VI architecture standard offers a number of op-
tions to execute communication operations. First, an
asynchronoussend/receive model is provided. Initiat-
ing a communication and testing its completion status
are separate actions as described above. The second
model is called remote direct memory access (RDMA)
which denotes one-sided communication and is asyn-
chronous as well. For example, an RDMA write oper-
ation transfers the message directly into the receiver’s
message buffer without notifying the receiver about
the message transfer. The memory region (virtual ad-
dress and memory handle) to be written must have
been disclosed to the writer prior to this operation.

A VI consumer (application) has two options to
check the completion status of communication oper-
ations, namely via non-blocking and blocking calls.
These calls are typically used by an application to
poll on the completion of a communication (on user
level), or to wait and be interrupted after its com-
pletion (which involves the OS), respectively. These
modes are illustrated by the benchmark pseudo-codes
in Table 1. Clearly, the blocking mode is more expen-
sive, but allows the CPU to perform useful activity in
lieu of busy waiting.

An application may own multiple VIs and many
communication operations may be outstanding on
each VI. In such a case, the application may need

to spend considerable time on checking its VIs for
completed communication activities. To avoid this,
VI architecture specifies the concept of completion
queues (CQs). CQs collect completion notifications
for multiple VIs. They enable the VI consumer to
check completion status in a single location and then
directly access the completed descriptor in a VI.

Another feature that appears to be attractive to be
used by communication software on top of VI archi-
tecture is itsscatter capability. A scatter operation can
be effected in send/receive mode by specifying, for in-
stance: (1) a single data segment in the send descrip-
tor describing the length, memory handle, and virtual
address of a single large send buffer; and (2) mul-
tiple data segments in the receive descriptor holding
the lengths, memory handles, and virtual addresses of
multiple smaller receive buffers. The NIC at the receiv-
ing end of the connection then autonomously scatters
the data to the receive buffers, given that they provide
sufficient aggregate space. This behavior may be more
convenient for the programmer than to explicitly have
a receiver process store the data into multiple destina-
tion locations. Furthermore, it is a zero-copy protocol,
whereas scattering data under program control repre-
sents an extra copy step.

Vice versa, a zero-copy gather operation can be ef-
fected using VI architecture features.

3. Performance evaluation

For implementation of higher-level communica-
tion libraries, it may be important to be aware of the



H. Hellwagner, M. Ohlenroth / Future Generation Computer Systems 18 (2002) 421–433 425

performance implications of communication options
like those described in the previous subsection. With
this knowledge, he/she can select the communication
modes and features that promise to provide the best
performance, or he/she can design the library to do
so depending on the actual communication scenario.

We therefore performed a study to explore the per-
formance behavior of the communication options out-
lined above.

3.1. Platforms and benchmarks

The performance experiments were run on two
cluster platforms. One platform runs the Windows
NT 4.0 (SP 6) OS, the second cluster runs Linux
(kernel 2.2.16). Both clusters consist of two machines
each equipped with an Intel Pentium® III 450 MHz
processor and the Intel 440BX chipset. The machines
are interconnected by the Giganet cLAN (cluster
LAN) network, more precisely by directly connected
GNN1000 cluster adapters which implement VI ar-
chitecture in hardware [7]. Peak performance of this
cluster interconnect is 1.25 GBit/s. We used the Win-
dows NT driver revision 4.0.0 and the Linux driver
revision 1.1.1.

Latency and bandwidth figures for the different
platforms and communication options were obtained
using well-known microbenchmarks. In addition, in
order to test more realistic communication patterns,
we adopted one of the memory system and com-
munication benchmarks proposed by Stricker and
co-workers [9,16]. Specifically, we report the results
for copy and communication operations with strided
stores of the data into the target buffer, i.e., a scatter
operation which occurs as a part of a matrix transpo-
sition, for instance.

3.2. Latency

Latency was measured using ping-pong tests (based
on viptest) with four-byte packets. We evaluated
the send/receive model with polling and blocking
synchronization and the RDMA write model with-
out immediate data. Synchronization in this context
denotes how a VI consumer detects, or is notified
of, the completion of a communication operation
(send or receive). The ping-pong test in the RDMA
write model is realized by having the receiving party

Table 2
Round-trip latencies for send/receive and RDMA write

Communication and
synchronization
model

Windows
NT (�s)

Linux (�s)

Send/receive, polling 14.5 14.8
Send/receive, blocking 45.0 33.0
RDMA write, polling 14.8 15.0
RDMA write, blocking 19.2 15.6

check a flag in its local memory that is set by the
sending party upon completion of the RDMA write.
Subsequently, the parties change their roles. Receive
descriptor processing is not involved, therefore.

Table 1 depicts the ping-pong benchmark codes for
the communication modes under investigation. Only
the cases with identical synchronization styles at both
the sending and receiving sides were considered.

Table 2 summarizes the round-trip latency results.
The polling mechanism is significantly faster than the
blocking mechanism on both platforms. This is due to
the software overhead for system calls, context switch-
ing and interrupt processing associated with the block-
ing synchronization style. The numbers indicate that
this software overhead is about 15�s for the Windows
NT and less than 10�s for the Linux machine. The
RDMA write with blocking synchronization is sur-
prisingly fast. An analysis (under Linux) of the system
calls performed by the VI library revealed that not all
of the wait calls (ioctls) do become effective, on av-
erage yielding a low overhead value per wait operation.

We instrumented all eight benchmark loops shown
in Table 1 using the RDTSC (read time stamp counter)
assembler instruction. Its overhead is approx. 41
clock cycles (about 90 ns). The tests ran under the
Linux OS. Figs. 2 and 3 exemplarily show detailed
timing results for the RDMA write communica-
tion loops. Posting descriptors (VipPostSend()
and VipPostRecv()) are low-overhead opera-
tions (770–900 ns). Testing send descriptor comple-
tion status (VipSendDone()) takes 3.0–4.1�s. It
is interesting to see that the blocking counterpart
VipSendWait() is very expensive for RDMA
write–style communication (11.7�s), compared to
4.9�s for send/receive style communication (Figs. 2
and 3). The diagrams show the steady-state unidi-
rectional latency (4.8�s) that we measured for the
hardware transfer time.



426 H. Hellwagner, M. Ohlenroth / Future Generation Computer Systems 18 (2002) 421–433

Fig. 2. Timing of RDMA write–style communication using polling synchronization.

3.3. Throughput

We measured one-way throughput by having the
sending process send out data at the maximum pos-
sible rate and having the receiver finally respond by
a single confirmation message to complete the test.
Furthermore, we measured two-way throughput using
the ping-pong code. Again, results were obtained for
both send/receive and RDMA write communication
models.

Figs. 4 and 5 summarize the results obtained for
the clusters running the Windows NT and Linux
OSs, respectively. The performance under both OSs
is comparable. The polling synchronization method
is faster than the blocking method on both clusters.
Traditional send/receive style communication can

Fig. 3. Timing of RDMA write–style communication using blocking synchronization.

achieve approx. 830 MBit/s. Depending on the syn-
chronization method, the RDMA write communica-
tion method is 45–100 MBit/s faster than send/receive
style communication. RDMA write can achieve ap-
prox. 869 MBit/s throughput.

For comparison purposes, one-way throughput re-
sults for the TCP/IP protocol over the Giganet cLAN
(using the socket interface) are shown in Fig. 4. The
performance does not exceed approx. 133 MBit/s on
the Windows NT cluster.

3.4. Strided copy performance

Strided copy tests are based on the memory system
performance benchmarks proposed by Stricker and
Gross [16]; these benchmarks have also been adapted



H. Hellwagner, M. Ohlenroth / Future Generation Computer Systems 18 (2002) 421–433 427

Fig. 4. Throughput on the Windows NT cluster.

Fig. 5. Throughput on the Linux cluster.



428 H. Hellwagner, M. Ohlenroth / Future Generation Computer Systems 18 (2002) 421–433

to test distributed shared memory systems and, thus,
their underlying interconnects, e.g., scalable coher-
ent interface (SCI) and Cray T3D [9]. In the original
strided copy benchmark, contiguously stored blocks
of double-precision floating point (FP) numbers are
spread over the target buffer, which may be located on
a different node. The distance between two buffer en-
tries depends on the organization of the buffer and is
called thestride. Stride 1 simulates copying memory
regions contiguously. Performance values for strides
greater than 1 are influenced by the memory and cache
organization and the properties of the communication
system.

The strided copy algorithm was implemented
in three different ways. First, the performance of
the memory system was evaluated using a local
(single-machine) version of the algorithm. A second
form combines this test with a message passing step:
the memory region is transferred over the network as
a contiguous block and then stored away (scattered)
locally on the receiving node with the required stride.
A third version combines both communication and
strided copy into one communication request using the
capability of the VI architecture to distribute received
data over a list of memory blocks (i.e., the scatter

Fig. 6. Block transfer with strided stores.

capability): for each double-precision FP number to be
received (as one element in a block that has been sent
contiguously), a separate target address is specified in
the receive descriptor; the NIC performs the strided
store as part of the receive operation, avoiding the ex-
tra copy step required in the second implementation.

Fig. 6 compares the throughput achieved for differ-
ent strides on both clusters. All tests handle blocks
of approx. 8 KB. (Buffer usage depends on the stride
size.) Only the local strided copy version is influ-
enced by the stride value. This version achieves a peak
throughput in excess of 3 GBit/s, indicating that the
local memory system is not a bottleneck. The second
form of strided store achieves a peak throughput of
585 MBit/s on the Windows NT and 653 MBit/s on
the Linux platform. In contrast, bandwidth for com-
munication integrating the strided store (version 3) is
nearly constant at the low rate of 22–26 MBit/s and is
determined by the latency of the communication sys-
tem; in this case, data segment processing by the NIC
appears to be the bottleneck because each store of a
double-precision FP value is encoded into one data
segment of a receive descriptor. Clearly, an eight-byte
value associated with a single data segment is too
fine-grained to be processed efficiently by the NIC.



H. Hellwagner, M. Ohlenroth / Future Generation Computer Systems 18 (2002) 421–433 429

Fig. 7. Automatic scattering with varying block sizes.

It is therefore interesting to see if and how per-
formance can improve when scattering applies to
coarser-grained blocks of data. Fig. 7 depicts the re-
sults of such an experiment, where the size of the
individual blocks to be scattered by the NIC increases
from 8 to 1024 bytes and 32 data segments are used
in the receive descriptor; i.e., the overall amount of
data transferred increases from 256 bytes to 32 KB.

Increasing the data block size for scattering
rapidly increases throughput, up to a value of about
560 MBit/s (Windows NT) and 731 MBit/s (Linux)
under a polling synchronization scheme; the results
for the blocking mode are slightly lower. Varying
the stride size did not significantly impact perfor-
mance. A comparison with Fig. 4 shows that data
scattering at the receiving end costs up to one-third
of the maximum throughput even for large scatter
blocks. Moreover, the scatter support provided by
the VI NIC (third algorithm) is inferior to explicit
scattering under program control (second algorithm);
cf. Fig. 6. Therefore, from a performance point
of view, the use of the scattering facilities of the
Giganet VI architecture implementation cannot be
recommended.

3.5. Completion queues

Completion queues record completed descriptors
in a single location and allow to directly branch to
VI work queues associated with completed com-
munication requests. This simplifies communication
software and should lower the overhead of checking
the completion status of communication operations
when multiple VIs are in use. To analyze the efficacy
of this concept, we compared the use of CQs to a
hand-crafted round robin (RR) descriptor process-
ing strategy. To ensure fairness, the RR code skips
empty VI send queues. The test program createsN
connections (onN VIs) between two communicat-
ing processes and distributes communication requests
randomly among them.

Figs. 8–10 present the results obtained using a to-
tal of one, two and five outstanding messages, respec-
tively, on Linux machines. We do not present results
for the Windows NT platform because creating mul-
tiple connections was unstable.

The CQ processing overhead is independent of
the number of VIs. This overhead is approx. 3%
compared to the RR strategy with one VI and one



430 H. Hellwagner, M. Ohlenroth / Future Generation Computer Systems 18 (2002) 421–433

Fig. 8. CQ vs. RR descriptor processing strategy (one outstanding message).

Fig. 9. CQ vs. RR descriptor processing strategy (two outstanding messages).



H. Hellwagner, M. Ohlenroth / Future Generation Computer Systems 18 (2002) 421–433 431

Fig. 10. CQ vs. RR descriptor processing strategy (five outstanding messages).

outstanding communication request. Fig. 9 shows
that Giganet cLAN achieves its maximum through-
put (793 MBit/s) when two or more communication
requests are outstanding. In this case, the CQ pro-
cessing overhead is approx. 1.8%. The advantage of
CQs vanishes when five messages are outstanding.
Fig. 10 reveals that the overhead is approx. 0.5% using
4096-byte messages. We obtained equivalent results
with 10 outstanding messages. The overhead caused
by the RR strategy increases with the number of con-
nections (Fig. 8). Fig. 10 shows that the overhead
is hidden when the number of outstanding messages
is high.

4. Related work

A number of investigations of VI architecture im-
plementations and, more specifically, of the Giganet
cLAN implementation have been reported in the liter-
ature. Prototype implementations (e.g., over Myrinet)
and their performance results are described in [1,4,11],
for instance. Higher-level communication layers (e.g.,
TCP, RPC and MPI) over Giganet’s cLAN and their

performance behavior are introduced in [3,15], among
others. Performance results for various communica-
tion layers and applications are also available on the
Giganet web site [8].

In contrast to these analyses, our work goes into
more details of various VI Architecture features and
their performance implications. Similar work for the
Compaq/Tandem ServerNet II VI architecture imple-
mentation is reported in [14]. Our work also extends
the performance results of [9] by providing data for
the strided copy benchmarks (direct deposit data trans-
fers to remote memory in the terminology of [9]) for
the Giganet cLAN interconnect.

5. Conclusions

In this paper, we investigated the performance im-
plications of using various communication models and
specific features of VI architecture, more precisely
its implementation incorporated in the Giganet cLAN
(GNN1000 adapter cards). The results can aid an im-
plementor of higher-level communication software in
deciding which features to use or avoid.



432 H. Hellwagner, M. Ohlenroth / Future Generation Computer Systems 18 (2002) 421–433

RDMA write provides better performance than
send/receive communication methods in terms of
throughput, given that the same synchronization
method for testing completion of communica-
tion operations is used (polling vs. blocking, i.e.,
interrupt-based notification). In terms of latency our
results indicate that the choice of the synchronization
method is very important: polling-based completion
checking avoids the overheads of interrupt processing
and context switching of the blocking synchroniza-
tion (less than 10�s and about 15�s, on the Linux
and Windows NT platforms, respectively), yielding
round-trip latency figures several times lower than
with blocking. It must be noted, though, that the
choice of polling vs. interrupt-based notification in-
volves several other aspects and trade-offs (e.g., [10]).

The use of multiple VIs and a completion queue
(CQ) appears to be comparable to a hand-crafted de-
scriptor processing strategy. Our results indicate that
multiple VIs do not increase performance (through-
put); the use of a CQ generates an overhead of 1.8–3%
for the case of a single VI and pays off when more
than 20 VIs are active. Given that a CQ can sim-
plify communication software, its use can be recom-
mended. Multiple outstanding messages always in-
crease throughput.

The scatter capability of the send/receive model that
we investigated using a more realistic and complex
strided copy benchmark turned out to yield disap-
pointing throughput, more than an order of magnitude
worse than the simple method to transfer a contigu-
ous block and scatter it locally on the receiving node.
Increasing the size of the data blocks to be scattered,
rapidly increases the performance of automatic scat-
tering yet does not reach the maximum throughput
that can be achieved when scattering is performed ex-
plicitly under program control. The superiority of the
simple, explicit method is consistent with the results
reported in [9].

References

[1] P. Buonadonna, A. Geweke, D. Culler, An implementation and
analysis of the virtual interface architecture, in: Proceedings
of the High Performance Networking and Computing
Conference 1998 (SC’98), Orlando, FL, November 7–13,
1998. http://www.supercomp.org/sc98/papers/.

[2] Virtual Interface Architecture Specification, Version 1.0,
Compaq Computer Corp., Intel Corporation, Microsoft
Corporation, December 1997. http://www.viarch.org.

[3] R. Dimitrov, A. Skjellum, An efficient MPI implementation
for virtual interface (VI) architecture-enabled cluster
computing, in: Proceedings of the Third MPI Developer’s
Conference, March 1999.

[4] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B.
Shubert, F. Berry, A.M. Merritt, E. Gronke, C. Dodd, The
Virtual Interface Architecture, IEEE Micro, March/April
1998.

[5] T. von Eicken, D.E. Culler, S.C. Goldstein, K.E. Schauser,
Active messages: a mechanism for integrated communication
and computation, in: Proceedings of the 19th International
Symposium on Computer Architecture, ACM, New York, CA,
1992.

[6] T. von Eicken, A. Basu, V. Buch, W. Vogels, U-Net:
a user-level network interface for parallel and distributed
computing, in: Proceedings of the 15th ACM Symposium on
Operating System Principles, ACM, New York, CA, 1995.

[7] GNN1000 High Performance Host Adapter User Guide,
Giganet, Inc., September 1998.

[8] cLAN
Performance, Giganet, Inc. http://www.giganet.com/products/
performance.htm.

[9] C. Kurmann, T. Stricker, A comparison of three gigabit
technologies: SCI, Myrinet and SGI/Cray T3D, in: H.
Hellwagner, A. Reinefeld (Eds.), SCI: Scalable Coherent
Interface. Architecture and Software for High-Performance
Compute Clusters, LNCS 1734, Springer, Berlin, 1999.

[10] K. Langendoen, R. Bhoedjang, H. Bal, Models for
asynchronous message handling, IEEE Concurr., April–June
1997.

[11] M-VIA: A High Performance Modular VIA for Linux,
National Energy Research Scientific Computing Center
(NERSC). http://www.nersc.gov/research/FTG/via.

[12] S. Pakin, V. Karamcheti, A. Chien, Fast Messages: Efficient,
Portable Communication for Workstation Clusters and MPPs,
IEEE Concurr., April–June 1997.

[13] C. Papadopoulos, G.M. Parulkar, Experimental evaluation
of SUNOS IPC and TCP/IP protocol implementation,
IEEE/ACM Trans. Network. 1 (2) 1993.

[14] N. Patel, H. Sivaraman, A model of completion queue
mechanisms using the virtual interface API, in: Proceedings
of the IEEE International Conference on Cluster Computing
(Cluster’2000), Chemnitz, Germany, November/December
2000.

[15] H.V. Shah, C. Pu, R.S. Madukkarumukumana, High
performance sockets and RPC over virtual interface (VI)
architecture, in: Proceedings of the Third International
Workshop on Communication and Architectural Support
for Network-Based Parallel Computing (CANPC’99), LNCS
1602, Springer, Berlin, 1999.

[16] T. Stricker, T. Gross, Global address space, non-uniform
bandwidth: a memory system performance characterization
of parallel systems, in: Proceedings of the ACM Conference
on High Performance Computer Architecture (HPCA-3), San
Antonio, TX, February 1997.



H. Hellwagner, M. Ohlenroth / Future Generation Computer Systems 18 (2002) 421–433 433

Hermann Hellwagner received his
Dipl.-Ing. degree (in Informatics) and
PhD degree (Dr. Techn.) in 1983 and
1988, respectively, both from the Univer-
sity Linz, Austria. From 1989 to 1994,
he was senior researcher and team/project
manager at Siemens AG, Corporate
Research and Development, München,
Germany, working on distributed shared
memory, parallel file systems, and perfor-

mance analysis of computer and communication systems. From
1995 to 1998, he was Associate Professor of parallel computer
architecture at Technische Universität München (TUM) where
he led a group of researchers working on compute clusters
and lightweight protocols and communication libraries based on
the high-performance scalable coherent interface (SCI) SAN.
Since late 1998, Dr. Hellwagner has been a full professor of

computer science in the Department of Information Technology at
the University Klagenfurt, Austria. His current areas of interest are
multimedia communication, cluster computing, embedded systems
and hardware/software interaction.

Matthias Ohlenroth received a Electrical
Engineering degree from the University of
Technology, Chemnitz in 1994. Currently
he is working on his PhD at the De-
partment of Information Technology, Uni-
versity Klagenfurt. His research interests
include active networks, multimedia and
cluster systems.


